In situ polymerization of a conductive polymer in acellular muscle tissue constructs.

نویسندگان

  • Antonio Peramo
  • Melanie G Urbanchek
  • Sarah A Spanninga
  • Laura K Povlich
  • Paul Cederna
  • David C Martin
چکیده

We present a method to chemically deposit a conductive polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), on acellularized muscle tissue constructs. Morphology and structure of the deposition was characterized using optical and scanning electron microscopies (SEM). The micrographs showed elongated, smooth, tubular PEDOT structures completely penetrating and surrounding the tissue fibers. The chemical polymerization was performed using iron chloride, a mild oxidizer. Remaining iron and chlorine in the tissue constructs were reduced to acceptable metabolic levels, while preserving the structural integrity of the tissue. We expect that these acellular, polymerized tissue implants will remain essentially unmodified in cellular environments in vitro and in vivo because of the chemical and thermal stability of the PEDOT polymer depositions. Our results indicate that in situ polymerization occurs throughout the tissue, converting it into an extensive acellular, non-antigenic substrate of interest for in vivo experiments related to nerve repair and bioartificial prosthesis. We expect these conducting polymer scaffolds to be useful for direct integration with electronically and ionically active tissues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

IN SITU SILICA SUPPORTED METALLOCENE CATALYSTS FOR ETHYLENE POLYMERIZATION

Bis(2-R-ind)ZrCl2 (R: H or phenyl) was supported on different types of silica by in situ impregnation method and used for ethylene polymerization. In this method, the step of catalyst loading on support was eliminated and common alkyl aluminum (triisobutylaluminum, TiBA) cocatalyst was used instead of expensive methyl aluminiumoxane (MAO) cocatalyst in the polymerization. The effect of surface ...

متن کامل

Synthesis & study of Polyethylene/Polyaniline/Montmorillonite ductile nano composites properties

Conducting polymers, because of their special properties, are used to introduce conductive polymeric composites. Also, clays have recently been used for preparation of polymer composites with enhanced mechanical and thermal properties. The aim of this work is to study the synergetic effect of the co-presence of conducting polyaniline and montmorillonite in the polyethylene matrix. Polyethylene ...

متن کامل

Synthesis & study of Polyethylene/Polyaniline/Montmorillonite ductile nano composites properties

Conducting polymers, because of their special properties, are used to introduce conductive polymeric composites. Also, clays have recently been used for preparation of polymer composites with enhanced mechanical and thermal properties. The aim of this work is to study the synergetic effect of the co-presence of conducting polyaniline and montmorillonite in the polyethylene matrix. Polyethylene ...

متن کامل

Preparation of high performance PP/ reduced graphene oxide nanocomposites through a combined in situ polymerization and masterbatch method

Despite the great potential of graphene as a nanofiller, achieving homogeneous dispersion remains the key challenge for effectively reinforcing polyolefin (such as polyethylene (PE) and polypropylene (PP)) nanocomposites. Therefore, in this research, we report a facile combined in situ polymerization and masterbatch method for fabricating PP/reduced graphene oxide (rGO) nanocomposites. In the p...

متن کامل

Effect of NH3/methylaluminoxane/dodecylamine modifiednanoclay on morphology and properties of polyethylene/ clay nanocomposites prepared by in-situ polymerization

This study presents methods for treating a kind of nanoclay and investigates the effects of methylaluminoxane (MAO) exposure time and or dodecylamine (DDA) reflux time on in-situ polymerization of ethylene in the presence of nanoclay and examines the morphology and properties of the prepared polyethylene/clay nanocomposites. The results revealed that by increasing MAO exposure time productivity...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Tissue engineering. Part A

دوره 14 3  شماره 

صفحات  -

تاریخ انتشار 2008